Miranda and Thompson's trace inequality and a log convexity result
نویسندگان
چکیده
منابع مشابه
A determinant inequality and log-majorisation for operators
Let $lambda_1,dots,lambda_n$ be positive real numbers such that $sum_{k=1}^n lambda_k=1$. In this paper, we prove that for any positive operators $a_1,a_2,ldots, a_n$ in semifinite von Neumann algebra $M$ with faithful normal trace that $t(1)
متن کاملBell Numbers, Log-concavity, and Log-convexity
Let fb k (n)g 1 n=0 be the Bell numbers of order k. It is proved that the sequence fb k (n)=n!g 1 n=0 is log-concave and the sequence fb k (n)g 1 n=0 is log-convex, or equivalently, the following inequalities hold for all n 0, 1 b k (n + 2)b k (n) b k (n + 1) 2 n + 2 n + 1 : Let f(n)g 1 n=0 be a sequence of positive numbers with (0) = 1. We show that if f(n)g 1 n=0 is log-convex, then (n)(m) (n...
متن کاملA Minkowski Type Trace Inequality and Strong Subadditivity of Quantum Entropy Ii: Convexity and Concavity
We revisit and prove some convexity inequalities for trace functions conjectured in the earlier part I. The main functional considered is Φp,q(A1, A2, . . . , Am) = (
متن کاملConvexity and Log Convexity for the Spectral Radius
The starting point of this paper is a theorem by J. F. C. Kingman which asserts that if the entries of a nonnegative matrix are log convex functions of a variable then so is the spectral radius of the matrix. A related result of J. Cohen asserts that the spectral radius of a nonnegative matrix is a convex function of the diagonal elements. The first section of this paper gives a new, unified pr...
متن کاملa determinant inequality and log-majorisation for operators
let $lambda_1,dots,lambda_n$ be positive real numbers such that$sum_{k=1}^n lambda_k=1$. we prove that forany positive operators $a_1,a_2,cdots, a_n$ in semifinite vonneumann algebra $m$ with faithful normal trace that $t(1)
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Linear Algebra and its Applications
سال: 1997
ISSN: 0024-3795
DOI: 10.1016/s0024-3795(97)80037-7